Data Sheet

Programmable Multi-transducer (MODBUS Rs485 Communication)

Fig. 1

Application

for the measurement of electrical variables in heavy current power systems
RISH Ducer M01 (Fig. 1) is a programmable transducer with RS
485 bus interface (MODBUS) ${ }^{\circledR}$. It supervises several parameter of an electrical power system simultaneously.
The RS 485 interface enables the user to determine the number variables to be supervised (up to the maximum available). The levels of all internal counters that have been configured (max. 4) can also viewed. Provision is made for programming the RISH Ducer M01 via the bus. A standard EIA 485 interface can be used. The transducers are also equipped with an RS 232 serial interface to which a PC with the corresponding software can be connected for programming or accessing and executing useful ancillary functions.
This interface is needed for bus operation to configure the device address, the Baud rate and possibly increasing the message waiting time (if the master is too slow) defined in the MODBUS ${ }^{\circledR}$ protocol.
The usual methods of connection, the types of measured variables, their ratings and the type of internal energy/metering are the main parameters that can be programmed.
The ancillary functions include a power system check and a facility for printing nameplates.
The transducer fulfils all the essential requirements and regulations concerning electromagnetic compatibility (EMC) and safety (IEC 1010 resp. EN 61010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Features

- Simultaneous measurement of several variables of a heavycurrent power system / full supervision of an asymmetrically loaded four-wire power system, rated current 1 to 6 A , rated voltage 57 to 400 V (phase to neutral) or 100 to 693 V (phase-to-phase)
- For all heavy-current power system variables
- Input voltage up to 693 V (phase-to-phase)
- Universal analogue outputs (programmable)
- Transfer of data via MODBUS ${ }^{\circledR}$ interface
- High accuracy: U/I 0.2\%, (under reference conditions)
- Universal digital outputs (meter transmitter, limits)
- 4 integrated energy meters, storage every each 203 s, storage for : 20 years
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings
- DC-, AC- power pack with wide power supply tolerance /universal Provision for either snapping the transducer onto top - hat rails or securing it with screws to a wall or panel

Measured variables		Types
Current, Voltage (rms), active/reactive/apparent power $\operatorname{Cos} \varphi, \sin \varphi$, power factor RMS value of the current with wire setting range (bimetal measuring function) Slave pointer function for the measurement of the RMS value IB Frequency Average value of the currents with sign of the active power (power symbol only)	Without analogue outputs, with bus interface RS 485 (MODBUS)	Ducer M
	4 analogue and bus interface RS 485 (MODBUS)	Ducer M
	2 analogue and 4 digital outputs	Ducer M2
	4 analogue and 2 digital outputs see Data sheet	Ducer M4
	Data bus LON see Data Sheet M00	Ducer M00

1 = Input transformer
6 = Electrical insulation
2 = Multiplexer
7 = Programming interface RS-232
3 = Latching stage
8 = Bus RS 485 (MODBUS)
4 = A/D converter
9 = Power supply

5 = Microprocessor
Fig. 2. Block diagram.
The RS 485 interface of the M01 is galvanically isolated from all other circuits. For an optimal data transmission the devices are connected via a 3 - wire cable, consisting of a twisted pair cable (for data lines) and a shield. There is no termination required. A shield both prevents the coupling of external noise to the bus and limits emissions from the bus. The shield must be connected to solid ground.
You can connect up to 32 members to the bus (including master).
Basically devices of different manufacturers can be connected to the bus, if they use the standard MODBUS ${ }^{\circledR}$ protocol. Devices without galvanically isolated bus interface are not allowed to be connected to the shield.
The optimal topology for the bus is the daisy chain connection from node 1 to node 2 to node n . The bus must form a single continuous path, \& the nodes in the middle of the bus must have short stubs. Longer stubs would have a negative impact on signal quality (reflection at the end). A star or even ring topology is not allowed.

Fig. 4
There is no bus termination required due to low data rate. If you got problems when using long cables you can terminate the bus at both ends with the characteristic impedance of the cable (normally about 120Ω). Interface convertors RS232 \Leftrightarrow RS 485 or RS564 interface cards often have a built-in termination network which can be connected to the bus. The second impedance then can be connected directly between the bus terminals of the device far most.

Fig. 4 shows the connection of transducers M01 to the MODBUS. The RS 485 interface can be realized by means of PC built - in interface cards or interface converters. Both is shown using i.e. the interfaces 13601 and 86201 of W \& T (Wiesemann \& Theis $\mathrm{GmbH})$. They are configured for a 2 -wire application with automatic control of data direction. These interfaces provide a galvanical isolation and a built-in termination network.

Important:

- Each device connected to the bus must have a unique address
- All devices must be adjusted to the same baudrate.

Symbols and their meaning

Symbols	Meaning
X	Measured variable
X0	Lower limit of the measured variable
X1	Break point of the measured variable
X2	Upper limit of the measured variable
Y	Output variable
Y0	Lower limit of the output variable
Y1	Break point of the output variable
Y2	Upper limit of the output variable
U	Input voltage
Ur	Rated value of the input voltage
U 12	Phase-to-phase voltage L1-L2
U 23	Phase-to-phase voltage L2-L3
U 31	Phase-to-phase voltage L3-L1
U1N	Phase-to-neutral voltage L1-N
U2N	Phase-to-neutral voltage L2-N
U3N	Phase-to-neutral voltage L3-N
UM	Average value of the voltages
	(U1N + U2N + U3N) / 3
I	Input current
11	AC current L1
12	AC current L2
13	AC current L3
Ir	Rated value of the input current
IM	Average value of the currents ($11+12+13$)/3
IMS	Average value of the currents and sign of the active power (P)
IB	RMS value of the current with wire setting range (bimetal measuring function)
IBT	Response time for IB
BS	Slave pointer function for the measurement of the RMS value IB
BST	Response time for BS
φ	Phase-shift between current and voltage
F	Frequency of the input variable
Fn	Rated frequency
P	Active power of the system P=P1+P2 + P3
P1	Active power phase 1 (phase-to-neutral L1-N)
P2	Active power phase 2 (phase-to-neutral L2-N)
P3	Active power phase 3 (phase-to-neutral L3-N)

Symbols	Meaning
Q	Reactive power of the system Q = Q1+ Q2 + Q3
Q1	Reactive power phase 1 (phase-to-neutral L1-N)
Q2	Reactive power phase 2 (phase-to-neutral L2-N)
Q3	Reactive power phase 3 (phase-to-neutral L3-N)
S	Apparent power of the system $\mathrm{S}=\sqrt{I_{1}{ }^{2}+\mathrm{I}_{2}{ }^{2} \mathrm{I}_{3}{ }^{2}} \cdot \sqrt{\mathrm{U}_{1}{ }^{2}+\mathrm{U}_{2}{ }^{2}+\mathrm{U}_{3}{ }^{2}}$
S1	Apparent power phase 1 (phase-to-neutral L1-N)
S2	Apparent power phase 2 (phase-to-neutral L2-N)
S3	Apparent power phase 3 (phase-to-neutral L3-N)
Sr	Rated value of the apparent power of the system
PF	Active power factor cos φ =P/S
PF1	Active power factor phase1 P1/S1
PF2	Active power factor phase2 P2/S2
PF3	Active power factor phase3 P3/S3
QF	Reactive power factor sin j =Q/S
QF1	Reactive power factor phase1 Q1/S1
QF2	Reactive power factor phase2 Q2/S2
QF3	Reactive power factor phase3 Q3/S3
LF	Power factor of the system LF = sgnQ (1- PF)
LF1	Power factor phase 1 sgnQ1 (1 - PF1)
LF2	Power factor phase 2 sgnQ2 (1 - PF2)
LF3	Power factor phase 3 sgnQ3 (1 - PF3)
H	Power supply
Hn	Rated value of the power supply
CT	c.t. ratio
VT	v.t. ratio

Technical Data

Input

Input variables
Measuring ranges
Waveform
Rated frequency
Own consumption [VA]
see Table 3 and 4
see Table 3 and 4
Sinusoidal
50... $60 \mathrm{~Hz} ; 162 / 3 \mathrm{~Hz}$

Voltage circuit: $\leq \mathrm{U}^{2} / 400 \mathrm{k}$ OHM
Condition:
Characteristic XH 01...XH10
Current circuit: ≤ 120.01 OHM

Continuous thermal ratings of inputs

Current circuit	$10 \mathrm{~A}$	400 V single-phase AC system 693 V three-phase system
Voltage circuit	$\begin{aligned} & 480 \mathrm{~V} \\ & 831 \mathrm{~V} \end{aligned}$	single-phase AC system three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Intervall between two overloads
Current circuit	400 V single-phase AC system 693 V three-phase system		
100 A	5	3 s	5 min.
250 A	1	1 s	1 hour
Voltage circuit	$1 \mathrm{~A}, 2 \mathrm{~A}, 5 \mathrm{~A}$		
Single-phase AC system 600 V $\mathrm{H}_{\text {intern }}: 1.5 \mathrm{Ur}$	10	10 s	10 min.
Three-phase system 1040 V $\mathrm{H}_{\text {intern }}: 1.5 \mathrm{Ur}$	10	10 s	10 s

MODBUS ${ }^{\circledR}$ (Bus interface RS-485)
Terminals
Screw terminals, terminals 23, 24, 25 and 26
Connecting cable
Max. distance
Baudrate
Number of bus
stations Screened twisted pair Approx. 1200 m (approx. 4000 ft .) 1200 ... 9600 Bd (programmable)

Dummy load

32 (including master) Not required

MODBUS $^{\circledR}$ is a registered trademark of the Schneider Automation Inc.

System response

Accuracy class
Duration of the
measurement cycle

Response time

Reference conditions

Ambient temperature
Pre-conditioning
Input variable
Power supply
Active/reactive factor
Frequency
Waveform
Output load
Miscellaneous
0.2 resp. 0.4 at applications with phase-shift

Approx. 0.5 to 1.2 s at 50 Hz , depending on measured variable and programming
1 ... 2 times the measurement cycle
$15 . . .30^{\circ} \mathrm{C}$
30 min. acc. to DIN EN 60688
Rated useful range
$\mathrm{H}=\mathrm{Hn}+1 \%$
$\cos \phi=1$ resp. $\sin \phi=1$
50 ... $60 \mathrm{~Hz}, 162 / 3 \mathrm{~Hz}$
Sinusoidal, form factor 1.1107
DC current output:
EN 60688

Influencing quantities and permissible variations
Acc. to EN 60688

Power Supply $\rightarrow 0$

DC-, AC - power pack (DC and $50 \ldots 60 \mathrm{~Hz}$)
Table 1: Rated voltages and tolerances

Rated voltage U_{N}	Tolerance
$24 \ldots 60 \mathrm{~V} \mathrm{DC/AC}$	$\mathrm{DC}-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V} \mathrm{DC/AC}$	$\mathrm{AC} \pm 10 \%$

Programming connector on transducer

Interface:
DSUB socket:

RS 232 C
9 -pin

The interface is electrically insulated fromall other circuits

Ambient conditions

Variations due to ambient
temperature:
$\pm 0.1 \% / 10$ K
$0 \ldots 15 \ldots 30 \ldots 45^{\circ} \mathrm{C}$ (usage group II)
for temperature
Storage temperature
Annual mean
relative humidity
-40 to $+85^{\circ} \mathrm{C}$
$\leq 75 \%$

Applicable standards and regulations

IEC 688 or DIN EN 60688	Electrical measuring transducers for converting AC electrical variables into analogue and digital signals
IEC 1010 or EN 61010	Safety regulations for electrical measuring, control and laboratory equipment
IEC 529 or EN 60529	Protection types by case (code IP)
IEC 255-4 Part E5	High-frequency disturbance test (static relays only)
IEC 1000-4-2/-3/-4/-6	Electromagnetic compatibility for industrial- process measurement and control equipment
EN 55 011	Electromagnetic compatibility of data processing and telecommunication equipment Limits and measuring principles for radio interference and information equipment
IEC 68-2-1/-2/-3/-6/-27 or EN 60 068-2-1/-2/-3/ $-6 /-27$	Ambient tests -1 -3 Cold, -2 Dry heat, -37 Damp heat, -6 Vibration,
-27 Shock	

Safety
Protection class
Enclosure protection
Overvoltage category Insulation test (versus earth)

Surge test :
Test voltages

Ambient tests
EN 60 068-2-6
Acceleration frequency

Acceleration

II (protection isolated, EN 61 010-1)
IP 40, housing
IP 20, terminals
III
Input voltage: AC 400 V Input Current: AC 400 V RS 485: DC 40 V Power supply: AC 400 V DC 230 V
5 kV ; 1.2/50 ms; 0.5 Ws
$50 \mathrm{~Hz}, 1 \mathrm{~min}$. according to
EN 61 010-1
5550 V , inputs versus all other circuits as well as outer surface 3250 V , input circuits versus each other
3700 V, power supply versus RS 485 and SCl as well as outer surface $490 \mathrm{~V}, \mathrm{RS} 485$ versus SCl as well as outer surface

Vibration
$+2 \mathrm{~g}$
$3 \times 50 \mathrm{~g}$
3 shocks each in 6 directions
Cold, dry heat, damp heat

Installation data

Housing
drawings"
$:$ Housing material Lexan 940 (polycarbonate),
flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen
For snapping onto top-hat rail (35 X 15 mm or 35 X 7.5 mm) acc. to EN 50022
or
directly onto a wall or panel using the pull-out screw hole brackets Any
approx. 0.7 kg

Screw terminals with wire guards
$\leq 4.0 \mathrm{~mm}^{2}$ single wire or
$2 \times 2.5 \mathrm{~mm}^{2}$ fine wire

Table 2: RishDucer MXX, standard version
The versions of the transducer below programmed with the basic configuration are available ex stock. It is only necessary to quote the

Description / Basic programming		Marking	Order No.
1. Mechanical design: 2. Rated input frequency: 3. Power supply:	Housing T24 for rail and wall mounting 50 Hz $24 \ldots 60 \mathrm{~V} \text { DC, AC }$	$\begin{aligned} & \text { M01-1 } \\ & 1 \\ & 7 \end{aligned}$	
4. Power supply connection: 5. Test certificate: 6. Configuration: See Table 4: "Ordering information"	85... 230 V DC, AC External connection (standard) None supplied Programmed basic configuration	8	
Basic configuration 1. Application (system): 2. Input voltage: 3. Input current: 4. Primary rating: 5. Energy meter 1: 6. Energy meter 2: 7. Energy meter 3: 8. Energy meter 4: See Table 3: "Programming"	4-wire, 3-phase system, asymmetric load Design value $\mathrm{Ur}=400 \mathrm{~V}$ Design value $\mathrm{Ir}=5 \mathrm{~A}$ Without specification of primary rating Not used Not used Not used Not used	A 44 U 21 V 2 W 0 EA 00 FA 00 GA 00 HA 00	

Table 3: Programming

Description / Basic programming	Application		
	A11 ... A16	A34	A24 / A44
(system) Single-phase AC			
3-wire, 3-phase symmetric load, phase-shift U: L1-L2, I: L1 *	A11	-	
3-wire, 3-phase symmetric load	A 12	-	
4-wire, 3-phase symmetric load	A 13	-	-
3-wire, 3-phase symmetric load, phase-shift U: L3-L1, I: L1 *	A 14	-	-
3-wire, 3-phase symmetric load, phase-shift U: L2-L3, I: L1 *	A15	-	-
3-wire, 3-phase asymmetric load	A16	-	-
4-wire, 3-phase asymmetric load	-	-	
4-wire, 3-phase asymmetric load, open-Y	-	A34	-

Table 3: Programming

Description / Basic programming					Application		
					A11 ... A16	A34	A24 / A44
Rated value Ur $=57.7 \mathrm{~V}$					U01	-	-
Rated value Ur $=63.5 \mathrm{~V}$					U02	-	-
Rated value Ur $=100 \mathrm{~V}$					U03	-	-
Rated value Ur $=110 \mathrm{~V}$					U04	-	-
Rated value Ur $=120 \mathrm{~V}$					U05	-	-
Rated value Ur $=230 \mathrm{~V}$					U06	-	-
Rated value Ur				[V]	U91	-	-
Rated value Ur $=100 \mathrm{~V}$					U21	U21	U21
Rated value Ur $=110 \mathrm{~V}$					U22	U22	U22
Rated value Ur $=115 \mathrm{~V}$					U23	U23	U23
Rated value Ur $=120 \mathrm{~V}$					U24	U24	U24
Rated value Ur $=400 \mathrm{~V}$					U25	U25	U25
Rated value Ur $=500 \mathrm{~V}$					U26	U26	U26
Rated value Ur [V]					U93	U93	U93
Lines U01 to U06: Only for single phase AC current or 4-wire, 3-phase symmetric load							
Line U91: Ur [V] 57 to 400 Line U93: Ur [V] > 100 to 693							
Rated value $\mathrm{Ir}=1 \mathrm{~A}$ V1					V1	V1	
Rated value $\mathrm{Ir}=2 \mathrm{~A} \quad \mathrm{~V} 2$					V2	V2	
Rated value Ir $=5 \mathrm{~A}$ V3					V3	V3	
Rated value Ir > 1 to 6				[A]	V9	V9	V9
Without specification of primary rating					W0	W0	W0
VT =	kV	\checkmark	CT =		W9	W9	W9
Line W9: Specify transformer ratio primary, e.g. $33 \mathrm{kV}, 1000 \mathrm{~A}$ The secondary ratings must correspond to the rated input voltage and current specified for feature 2, respectively 3.							
Not used					EA00	EA00	EA00
11	System		[Ah]		EA50	EA51	
11	L1		[Ah]		-	EA51	EA51
12	L2		[Ah]		-	EA52	EA52
13	L3		[Ah]		-	EA53	EA53
S	System		[VAh]		EA54	EA54	EA54
S1	L1		[VAh]		-	-	EA55
S2	L2		[VAh]		-	-	EA56
S3	L3		[VAh]		-	-	EA57
P	System	(incoming)	[Wh]		EA58	EA58	EA58
P1	L1	(incoming)	[Wh]		-	-	EA59
P2	L2	(incoming)	[Wh]		-	-	EA60
P3	L3	(incoming)	[Wh]		-	-	Ea61

[^0]Table 3: Programming

Electrical Connections

Function		Connect.
Measuring input Θ	AC current IL1	1/3
	IL2	4 / 6
	IL3	$7 / 9$
	AC voltage UL1	2
	UL2	5
	UL3	8
	N	11
$\begin{aligned} & \hline \text { RS } 485 \\ & \text { (MODBUS) } \end{aligned}$	Tx + / Rx +	23
	Tx-/ Rx-	24
	GND	25
	$\stackrel{\square}{\overline{=}}$	26
Power supply$\rightarrow \bigcirc$	AC	13
	\sim	14
	DC +	13
	-	14

If power supply is taken from the measured voltage internal connections are as follows:

Application (system)	Internal connection Terminal / System
Single-phase AC current	$2 / 11 \quad$ (L1 - N)
4-wire 3-phase symmetric load	$2 / 11 \quad$ (L1 - N)
All other (apart from A15 / A16 / A24)	$2 / 5 \quad$ (L1 - L2)

Electrical Connections

Measuring inpu								
System / application	Terminals							
3-wire 3-phase symmetric load Phase-shift U: L2 - L3 I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:							
4-wire 3-phase symmetric load I: L1	Connect the voltage according to the following table for current measurement in L2 or L3:							
3-wire 3-phase asymmetric load								

System / application

Relationship between PF, QF and LF

Fig. 3. Active power PF -_, reactive power QF -------, power factor LF -----

Dimensional Drawing

All Dimensions are in mm

Fig. 5. RISH Ducer M01 in housing T24 clipped onto a top-hat rai ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50022).

Fig. 6. RISH Ducer M01 in housing T24, screw hole mounting brackets pulled out.

Ordering Information (Table 5)

DESCRIPTION	MARKING
1. Mechanical design Housing T24 for rail and wall mounting 01-1	M
2. Rated input frequency 1) $50 \mathrm{~Hz}(60 \mathrm{~Hz}$ possible without additional error; $162 / 3 \mathrm{~Hz}$, additional error 1.25) 2) $60 \mathrm{~Hz}(50 \mathrm{~Hz}$ possible without additional error; $162 / 3 \mathrm{~Hz}$, additional error 1.25) 3) $162 / 3 \mathrm{~Hz}$ (not re-programming by user, $50 / 60 \mathrm{~Hz}$ possible, but with additional error 1.25)	2
3. Power supply 7) Nominal range $24 \ldots 60 \mathrm{~V}$ DC, AC	7
4. Power supply connection 1) External (standard) 2) Internal from measuring input Line 2: Not available for rated frequency $162 / 3 \mathrm{~Hz}$ and applications A15 / A16 / A24 (see Table 4) Caution: The power supply voltage must agree with the input voltage (Table 4)!	2
5. Test certificate 0) None supplied E) With test certificate in English	E
6. Configuration 0) Basic configuration, programmed 9) Programmed acc. to specification Line 0: Not available if the power supply is taken from the measuring input Line 9: All the programming data must be entered on Form W 2408e and the form must be included with the order.	9

```
RISHABH INSTRUMENTS PVT.LTD F-31, MIDC, Satpur, Nashik-422 007,India.
Tel.: \(+912532202160,2202202\) Fax : +91 2532351064
E-mail : India :- marketing@rishabh.coin
International :- exp.marketing@rishabh.co.in
www.rishabh.co.in
```

www.rishabh.co.in

[^0]: Continuation " 5 . Energy Meter 1 " see next page!

